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Abstract 

We show h o w  our hypercomplex  number  approach to the  basic laws (which works so well 
for Dirac and Maxwell theory)  leads to a divergence f rom the Einstein approach to gravity 
except  in the  contracted scalar equat ion.  Our equat ion  seems to allow a nonsymmet r i c  Ttw 
source tensor.  The  serious p rob lem of  energy conservation is considered bu t  no t  resolved. 

1. Introduction 

Using "equivalence" speculations, Einstein surmised that gravitation, as an 
interaction, is best looked at as a warping of the space-time in which bodies 
move freely. He conjectured that all forms of energy" concentration contribute 
to the curvature in their vicinity. This was a very bold guess and totally un- 
supported by any existing data at the time. He was able to predict effects of 
the curvature near the sun which were subsequently verified. The tests are 
macroscopic (light bending and perihelion precession) or "qualitative" (AE = 
h A ~  for photons in a gravity field). The spherically symmetric empty space 
(Schwarzchild) solution of his equation requires no assumptions about the 
central point source term Tuv, except that in general Tuv = Tvu is essential 
for internal consistency of Einstein's equation. 

Because of its simplicity and elegance, one can easily imagine that Einstein's 
equation is adequate for all classical gravitational phenomena. The source 
term Tuv has an "obvious" form only for the special case of  dilute dust. Any 
conjectures about its form in other cases are presently untested and, therefore, 
unreliable. 

Here we shall show that an extension of our previous speculation as to a 
"natural" gravitation law (Edmonds, 1973) actually becomes more general than 
Einstein's equation, since it is well defined for T~v ~ Tu~ and reduces to a 
common consequence of Einstein's equation when Tuv = Tvu. There is no 
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compelling reason to believe that Tuv must be symmetric, especially in the 
quantum world where Einstein's equation has run into considerable difficulty. 

Simplicity and elegance are hallmarks of the basic laws of free fermions 
and bosons in flat space quantum theory. This gives us hope that the same is 
true of quantum gravity. Our gravity law is structurally fairly simple when 
compared to the curved space Dirac and Maxwell equations. This is a fair 
comparison since the universe as a whole is probably curved and unstable in 
time. 

The key to our approach is the development of gravity theory in the same 
natural hypercomplex number formalism which fits the relativistic quantum 
theory of electrons and photons. This number system is the 32 element system 
isomorphic to the algebra of 4 x 4 complex matrices, which in turn is isomorphic 
the Dirac-Clifford algebra with complex coefficients. This algebra accommodates 
in a natural way either 3 + 1 or 4 + 1 space-time and our development will 
apply to both! We have tried to show recently that a subnuclear fourth spatial 
dimension has a rather natural relationship to rest mass in quantum theory 
(Edmonds, 1974). Thus quantum gravity at the subnuclear level may well be 
a 5-space theory. We restrict our present considerations to unquantized equations 
however. 

Our notation has been thoroughly developed in the 1974 papers and the 
reader is referred there for details. We really need only the facts that (AB) t  = 
B t A t  and (AB) ~ = B~A ~ for the hypercomplex numbers and that A = A t implies 
A = AUb~ W~ith/~ = 0, 1, 2, 3, for 4-vectors; and/~ = 0, 1, 2, 3, 4 for 5-vectors. 
Here b u = bu(°)(eo) + buO)(e l )  + bu(Z)(e2) + bu(3)(ea) for 4-vectors and has the 
additional term b/~ (4) (ifo) for 5-vectors. Actually there is a sixth term bu(S)(f0) 
in A = At  but this is only mixed with the other five under conformal trans- 
formations (SO(4, 2)). We assume instead that the Lorentz group, LeLe* = 
t(eo), is generalized only to LL ~ = l(eo), e.g., SO(4,1), as the natural symmetry 
group in this hypercomplex number approach. 

2. Einstein's Equation Reformulated 

We first rewrite Einstein's gravity law in hypercomplex number form. To 
do so, we begin with the "definition" of curvature 

a (2.1) Duvb~ ) - (DuD v - DvDu)b~c 0 = -Dvub~e 0 = Rauvb(u) 

By multiplying through with b (a) and summing on (a) we obtain 

(a) ~ o x  ~a .h(a)_  x a ~, (2.2) bp (Duvb(a)) =. .ouvO(oO~p - RauvSo = Rouv 

Now contracting on X and/a we obtain 

Rhoxv - R o y  = b o (Dxvb(co) (2.3) 

Again contracting on p and u we have 

g~ = bV(CO(Davb~a)) - g (2.4) 
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Straight tensor analysis (no physics) shows that 

D . ( R  -  g"VR) = 0 ,  R -- R = ( 2 . 5 )  

Having reached this point, it is then natural to guess that the law of gravity is 

R up - ½gUVR = ~T  uv, then D ,  T up = 0 (2.6) 

This is Einstein's equation. Notice that T uv = T "u is necessary for the source 
term since the left hand side is symmetric. We can use the b~'a) expressions for 
RUV and R along with 

gup =- ~ [(bu~bp) + ( ) ' ]  = b(~)~(~DbvO) - (bu [bp) (2.7) 

to rewrite equation (2.6) entirely in terms of b~a) and its covariant derivative 
commutator Dxp. To introduce the hypercomplex numbers {ca ) we write 

b(CObp(a) - 1,(~)~(~)~" = b(a)(eale~)bv(¢) = (bulbp) (2.8) - - u  "(~)uv(~) 

This puts Einstein's equation in the form 

(bp[[Dx~b a ] ) - ~(b o Ibp)(b°j[Da~bX] ) = nTp~ (2.9) 

One of our basic postulates has been that all fundamental laws of nature 
should be written in terms of hypercomplex numbers with all indices summed 
over. This is proposed as a "substitute" for Einstein's idea that they must be 
form invariant under arbitrary coordinate transformations. We, therefore, must 
sum on fi and p in equation (2.9). But we have also postulated that natural 

1 
laws are form invariant under the group symmetry b u -+ b u = - L t b u L  with 
L L "  =- 1(Co), i.e., one replaces all hypercomplex numbers by introducing L's 
appropriately. The equation must be such that all the L's can be removed 
from the equation without destroying its equality. (This simple group syrmlaetry 
is usually looked at from the cumbersome viewpoint of "independent local 
(flat space) Lorentz transformations.") To satisfy these two requirements we 
multiply Toy by b ° ^ and b p and sum on p and v. Then 

p !  ^ I / ) ¢  
(b ) (T'ov)(b ) = ( L t b O L ) ' ( L t T o v L t ^ ) ( L t b U L ) = L ' ( b O ^ T o v b P ) L  (2.10) 

We see that Toy must transform a s L t T o ~ L t "  under the L group for from 
covariance. A special case T~p = Top = (e o) is consistent with this requirement 
of L group symmetry. Indeed, equation (2.9), if valid, requires that Top be 
proportional to (Co) since the left hand side is. (We are assuming that the 
coupling constant i¢ is not hypercomplex.) 

Equation (2.9) is not a simple equation. One would not likely guess such 
an equation by looking at the hypercomplex number formulation of space- 
time. This is contrary to the case of the Dirac and Maxwell equations! 

3. H v p e r c o m p l e x  N u m b e r  Consequence  o f  Einstein 's  Equat ion  

We now multiply equation (2.9) by b o ^b v and sum on p and v. This gives 

bO ~Rovb v - ~(b a [bv)b ° ^bVR : Kb ° *Tovb v (3.1) 
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Next we add to this equation its [ ] "conjugate and obtain 

Rpv(b p [b v) - ~(bp ]bv)(b p [bU)R = K 1 [b p ^Tpub u + bV^Tpvbp] (3.2) 

We can now use Tpu = Tvp to rewrite the right hand side and obtain 

R f  - ½(by[ bV)R = Kb p "Tpvb v = K(bPl Tpvb v) = ~¢T~ ~ - ~T (3.3) 

In 4-space (bulb v) = 6v ~= 4 so R = -~¢T. (In 5-space (bv[b v) = 5 so R = 

In our 1973 paper, we proposed as the simplest natural gravity law 

b p "(Dp.b v) = + Kb p ^Tpvb v (3.4) 

and concluded that it was essentially equivalent to Einstein's equation. 
Actually, Einstein's equation contains it provided Tuv = T ~ .  The sum over 
p and v in obtaining equation (3.1) meant that we lost information. Because 
a sum of  several equations is equal, we cannot go backward and assume that 
the individual parts are separately equal. But the axiom of  havin~ laws that 
are hypercomplex and invariant requires no "loose" indices. 

4. Hypercomplex Generalization 

We write equation (3.2) once more in full detail 

~(bvlb )(b [[DxpbX]) = ~¢(bPlTxob x) (4.1) (bPl(bpl[D~bX])b v ) _  1 ~ p 

We recall that  there are two terms on the left because Einstein believed that  
DuT ~v = 0 should be a physical requirement. A similar approach leads to 
Maxwell's equation in flat space as we now show. We have A = AUbu and 
D = DUb, and want a second order differential equation. There are two forms 
meeting the requirement of  L symmetry;  (D tD)¢A and D(D IA). Therefore 
we guess the equation 

(D [D)¢A + (constant)D(D ]A) = eJ (4.2) 

where e is proportional to charge and J = JUb u. By assuming (D I J )  = 0 we 
find 

(D[(D[D)tA) + (constant)(DlD(D]A)) = e(D[J) = 0 (4.3) 

or, using the linearity of  the innerproduct and the fact that it is =(Co), 

(DID )(DIA ) + ( constant)(D[D )(D lA ) = 0 (4.4) 

Therefore the (constant) in equation (4.4) is - 1  for a conserved current source 
J .  In curved space, however, it is not so simple. We have two kinds of  covariant 
derivative, D(bu) :~ 0 a n d ~ ( b u )  = D(b u) + Ftb~  + buF with F hypercomplex 
and defined such t h a t ~ ( b g )  = 0. Maxwell's equation then, we guess, becomes 

(~ I~)¢A - ~ ( ~ [ A )  = e.J ~ =~Ub u = bu~  u (4.5) 
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For the gravity field {b (") } wave equation we use Dubs, rather than ~ubv,  
otherwise we wouldn' t  have any equation. Actually (DuD v - DvDu)bU seems 
like a natural form to take since this comes from the curvature idea and par- 
tially meets our requirement of  summing on all indices. We therefore try to 
build a second-order differential equation of gravity using [Dxvb x ] as a "unit ."  
We must sum all indices, satisfy L group symmetry,  and make the equation as 
simple as possible. We therefore would guess (now using equation (4.1) as a 
hint) 

C 1 b p ^ [Dxvb ~, ] bV~bp + c2 bp^ [D~.vb ~'] b o "b u + c3b w [Dxvb x ] = _KbV^T~b x +~" 

(4.6) 

Since the left hand side is not equal to its [ ] ~ we do not need to have TKo = 
Tpx. °J'is a hypercomplex source transforming under L according to i f "  = L A ~ .  
By adding to the equation its [ ] ~ we obtain 

cl b ° A{ [Dxvb x ]b w + b u [ ]. }b ° + c2bP ~ [Dxub x] bp "b v + 

cabP^bv [Dxob x ] "b v + 2ca(bY[ [Dx~b x ] ) = -2K(bV[ Txvb x) + 2(3- ' tS)  

(4.7) 

or, on noting that  (A + A ^) c¢ (eo) if A = bXb w,  and bP^bo = (bPlbo), we get 

C 1 (b p lbp)(bVt [Dxvb x] ) + ½c2 bO" [ [Dxvb x] bp ̂  + by [Dxvb ;~ ] ] b v 

+ ca(b~l[Dx~bX]) = -K(b~lTx~b x) + (SLY' )  (4.8) 

We also used 

(b~zlbu) = ½ [(buSby) + ( ) ' ]  = ½ [(bubu') + ( )^] (4.9) 

Comparing equation (4.8) with R we see that it becomes 

c 1 (bP[bo)R + -~czb °" [ [Dxvb x] bp" + by [Dxpb ~'] ] b v 

+ caR = -K(bVl Txvb x) + (ff- ' lJ ' )  = --~bV^l[T~.v + Tuxlb x + ( J j f )  

(4.10) 
which is very similar to equation (3.3) only i fc  2 = 0. We could surmise from 
Einstein's equation that  c 1 = ½ and c a = - 1 ,  but cannot be sure that c2 = 0. 

We cannot compare our equation directly with Einstein's equation because 
his has free indices and ours cannot. At best, we can show that they both lead 
to some common equation. Our equation (4.10) suggests R = - K T  as the 
classical limit equation. (This contains the Schwarzchild solution in empty 
space.) 

To apply some criterion, analogous to DuT tar = 0, to our gravity equation 
would require an approach similar to that  shown for the Maxwell equation. 
But what would be reasonable? Should we assume 

(D[(b~"TxvbX)) = 0 or (~[(bv^rxvb~')) = 0 (4.11) 
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or something else? We must leave this for the future. At present we only 
propose that the gravity law is 

b v^ [Dxvb x ] - ~b p~ [D~vb x] bV^bp = KbV^Txvb x + if" 

+ (constant) bY'{ [Dpxb p ] b v" }b x (4.12) 

Written in this final form with unknown (maybe small-maybe zero) "constant," 
the "extra" term reminds one of the cosmological constant {Agh~ ) but it is 
obviously not. 

We see that gravity provides a real test of our hypercomplex number axioms 
about the basic laws. Gravity again proves an important laboratory for 
examining quantum relativistic laws, even if it is very weak in practice. 
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